Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
PLoS One ; 19(3): e0298425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551904

RESUMEN

INTRODUCTION: Infection causes a vast burden of disease, with significant mortality, morbidity and costs to health-care systems. However, identifying the pathogen causative infection can be challenging, resulting in high use of broad-spectrum antibiotics, much of which may be inappropriate. Novel metagenomic methods have potential to rapidly identify pathogens, however their clinical utility for many infections is currently unclear. Outcome from infection is also impacted by the effectiveness of immune responses, which can be impaired by age, co-morbidity and the infection itself. The aims of this study are twofold: To compare diversity of organisms identified and time-to-result using metagenomic methods versus traditional culture -based techniques, to explore the potential clinical role of metagenomic approaches to pathogen identification in a range of infections.To characterise the ex vivo function of immune cells from patients with acute infection, exploring host and pathogen-specific factors which may affect immune function and overall outcomes. METHODS: This is a prospective observational study of patients with acute infection. Patients with symptoms suggestive of an acute infection will be recruited, and blood and bodily fluid relevant to the site of infection collected (for example, sputum and naso-oropharyngeal swabs for respiratory tract infections, or urine for a suspected urinary tract infection). Metagenomic analysis of samples will be compared to traditional microbiology, alongside the antimicrobials received. Blood and respiratory samples such as bronchoalveolar lavage will be used to isolate immune cells and interrogate immune cell function. Where possible, similar samples will be collected from matched participants without a suspected infection to determine the impact of infection on both microbiome and immune cell function.


Asunto(s)
Antibacterianos , Infecciones del Sistema Respiratorio , Humanos , Antibacterianos/uso terapéutico , Lavado Broncoalveolar , Proyectos de Investigación , Infecciones del Sistema Respiratorio/diagnóstico , Metagenómica , Estudios Observacionales como Asunto
2.
Lancet Digit Health ; 6(2): e93-e104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278619

RESUMEN

BACKGROUND: Multicentre training could reduce biases in medical artificial intelligence (AI); however, ethical, legal, and technical considerations can constrain the ability of hospitals to share data. Federated learning enables institutions to participate in algorithm development while retaining custody of their data but uptake in hospitals has been limited, possibly as deployment requires specialist software and technical expertise at each site. We previously developed an artificial intelligence-driven screening test for COVID-19 in emergency departments, known as CURIAL-Lab, which uses vital signs and blood tests that are routinely available within 1 h of a patient's arrival. Here we aimed to federate our COVID-19 screening test by developing an easy-to-use embedded system-which we introduce as full-stack federated learning-to train and evaluate machine learning models across four UK hospital groups without centralising patient data. METHODS: We supplied a Raspberry Pi 4 Model B preloaded with our federated learning software pipeline to four National Health Service (NHS) hospital groups in the UK: Oxford University Hospitals NHS Foundation Trust (OUH; through the locally linked research University, University of Oxford), University Hospitals Birmingham NHS Foundation Trust (UHB), Bedfordshire Hospitals NHS Foundation Trust (BH), and Portsmouth Hospitals University NHS Trust (PUH). OUH, PUH, and UHB participated in federated training, training a deep neural network and logistic regressor over 150 rounds to form and calibrate a global model to predict COVID-19 status, using clinical data from patients admitted before the pandemic (COVID-19-negative) and testing positive for COVID-19 during the first wave of the pandemic. We conducted a federated evaluation of the global model for admissions during the second wave of the pandemic at OUH, PUH, and externally at BH. For OUH and PUH, we additionally performed local fine-tuning of the global model using the sites' individual training data, forming a site-tuned model, and evaluated the resultant model for admissions during the second wave of the pandemic. This study included data collected between Dec 1, 2018, and March 1, 2021; the exact date ranges used varied by site. The primary outcome was overall model performance, measured as the area under the receiver operating characteristic curve (AUROC). Removable micro secure digital (microSD) storage was destroyed on study completion. FINDINGS: Clinical data from 130 941 patients (1772 COVID-19-positive), routinely collected across three hospital groups (OUH, PUH, and UHB), were included in federated training. The evaluation step included data from 32 986 patients (3549 COVID-19-positive) attending OUH, PUH, or BH during the second wave of the pandemic. Federated training of a global deep neural network classifier improved upon performance of models trained locally in terms of AUROC by a mean of 27·6% (SD 2·2): AUROC increased from 0·574 (95% CI 0·560-0·589) at OUH and 0·622 (0·608-0·637) at PUH using the locally trained models to 0·872 (0·862-0·882) at OUH and 0·876 (0·865-0·886) at PUH using the federated global model. Performance improvement was smaller for a logistic regression model, with a mean increase in AUROC of 13·9% (0·5%). During federated external evaluation at BH, AUROC for the global deep neural network model was 0·917 (0·893-0·942), with 89·7% sensitivity (83·6-93·6) and 76·6% specificity (73·9-79·1). Site-specific tuning of the global model did not significantly improve performance (change in AUROC <0·01). INTERPRETATION: We developed an embedded system for federated learning, using microcomputing to optimise for ease of deployment. We deployed full-stack federated learning across four UK hospital groups to develop a COVID-19 screening test without centralising patient data. Federation improved model performance, and the resultant global models were generalisable. Full-stack federated learning could enable hospitals to contribute to AI development at low cost and without specialist technical expertise at each site. FUNDING: The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.


Asunto(s)
COVID-19 , Atención Secundaria de Salud , Humanos , Inteligencia Artificial , Privacidad , Medicina Estatal , COVID-19/diagnóstico , Hospitales , Reino Unido
3.
BMJ Open ; 14(1): e073431, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233048

RESUMEN

BACKGROUND: There is increasing evidence to suggest vitamin D plays a role in immune and vascular function; hence, it may be of biological and clinical relevance for patients undergoing major surgery. With a greater number of randomised studies being conducted evaluating the impact of vitamin D supplementation on surgical patients, it is an opportune time to conduct further analysis of the impact of vitamin D on surgical outcomes. METHODS: MEDLINE, EMBASE and the Cochrane Trials Register were interrogated up to December 2023 to identify randomised controlled trials of vitamin D supplementation in surgery. The risk of bias in the included studies was assessed using the Cochrane Risk of Bias tool. A narrative synthesis was conducted for all studies. The primary outcome assessed was overall postoperative survival. RESULTS: We screened 4883 unique studies, assessed 236 full-text articles and included 14 articles in the qualitative synthesis, comprising 1982 patients. The included studies were highly heterogeneous with respect to patient conditions, ranging from open heart surgery to cancer operations to orthopaedic conditions, and also with respect to the timing and equivalent daily dose of vitamin D supplementation (range: 0.5-7500 mcg; 20-300 000 IU). No studies reported significant differences in overall survival or postoperative mortality with vitamin D supplementation. There was also no clear evidence of benefit with respect to overall or intensive care unit length of stay. DISCUSSION: Numerous studies have reported the benefits of vitamin D supplementation in different surgical settings without any consistency. However, this systematic review found no clear evidence of benefit, which warrants the supposition that a single biological effect of vitamin D supplementation does not exist. The observed improvement in outcomes in low vitamin D groups has not been convincingly proven beyond chance findings. TRIAL REGISTRATION NUMBER: CRD42021232067.


Asunto(s)
Suplementos Dietéticos , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Vitamina D/uso terapéutico , Vitaminas/uso terapéutico
4.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972349

RESUMEN

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía Bacteriana , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Canales de Calcio/metabolismo , Canales de Calcio/farmacología , Calcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente a Meticilina/metabolismo , Señalización del Calcio , Inflamación/tratamiento farmacológico , Pulmón/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Neumonía Bacteriana/tratamiento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacología
5.
J Allergy Clin Immunol ; 153(1): 320-329.e8, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678576

RESUMEN

BACKGROUND: Electronic cigarette (e-cigarette) use continues to rise despite concerns of long-term effects, especially the risk of developing lung diseases such as chronic obstructive pulmonary disease. Neutrophils are central to the pathogenesis of chronic obstructive pulmonary disease, with changes in phenotype and function implicated in tissue damage. OBJECTIVE: We sought to measure the impact of direct exposure to nicotine-containing and nicotine-free e-cigarette vapor on human neutrophil function and phenotype. METHODS: Neutrophils were isolated from the whole blood of self-reported nonsmoking, nonvaping healthy volunteers. Neutrophils were exposed to 40 puffs of e-cigarette vapor generated from e-cigarette devices using flavorless e-cigarette liquids with and without nicotine before functions, deformability, and phenotype were assessed. RESULTS: Neutrophil surface marker expression was altered, with CD62L and CXCR2 expression significantly reduced in neutrophils treated with e-cigarette vapor containing nicotine. Neutrophil migration to IL-8, phagocytosis of Escherichia coli and Staphylococcus aureus pHrodo bioparticles, oxidative burst response, and phorbol 12-myristate 13-acetate-stimulated neutrophil extracellular trap formation were all significantly reduced by e-cigarette vapor treatments, independent of nicotine content. E-cigarette vapor induced increased levels of baseline polymerized filamentous actin levels in the cytoplasm, compared with untreated controls. CONCLUSIONS: The significant reduction in effector neutrophil functions after exposure to high-power e-cigarette devices, even in the absence of nicotine, is associated with excessive filamentous actin polymerization. This highlights the potentially damaging impact of vaping on respiratory health and reinforces the urgency of research to uncover the long-term health implications of e-cigarettes.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Neutrófilos , Cigarrillo Electrónico a Vapor/metabolismo , Cigarrillo Electrónico a Vapor/farmacología , Nicotina/efectos adversos , Nicotina/metabolismo , Actinas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
6.
Materials (Basel) ; 16(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38138738

RESUMEN

Metals are particularly sensitive to some pollutant gases. Many museum showcases and store rooms present atmospheres that can corrode cultural heritage artefacts containing metals. Whilst numerous strategies have been reported to mitigate such situations, avoiding them is preferable. Several approaches to testing materials used in construction, fitting out or dressing are used. The relative merits and drawbacks are discussed. Several parameters of the most widely used, accelerated corrosion 'Oddy' test are investigated. The influence of abrasive on subsequent corrosion of lead and copper coupons are assessed. Quantification methods for tested coupons are reviewed. The influence of test duration and temperature are assessed through comparison with real-life, long-term experience of material behaviour. Direct contact tests with touching the test material are investigated. Several materials present in artefacts are known to potentially cause corrosion when enclosed with metals in other artefacts. A number of situations are investigated with pollution and RH and some corrosion rate measurements. Ways to isolate artefacts or mitigate are explored and a decision support model is further developed.

7.
BMJ Open Respir Res ; 10(1)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37827807

RESUMEN

INTRODUCTION: Community-acquired pneumonia has high mortality and is associated with significant healthcare costs. In older adults with community-acquired pneumonia neutrophil dysfunction has been identified and is associated with poor outcomes for patients. Immunometabolism is a rapidly developing field which links immune cell function to metabolism. This study aims to explore neutrophil metabolism in community-acquired pneumonia. METHODS AND ANALYSIS: Pneumonia Metabolism in Ageing study is a prospective observational study recruiting older adults hospitalised with community-acquired pneumonia to examine neutrophil function and metabolic status. Controls will be older adults with no acute illness. The primary endpoint is neutrophil chemotaxis. ETHICS AND DISSEMINATION: The study has ethical approval from the Research Ethics Committee Wales, reference 19/WA/0299. This study involves participants who may lack the capacity to consent to research involvement, in this situation, personal or professional assent will be sought. The results from this study will be submitted for publication in peer-reviewed journals and disseminated at local and international conferences.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Sepsis , Humanos , Anciano , Neutrófilos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Neumonía/metabolismo , Estudios de Cohortes , Envejecimiento , Estudios Observacionales como Asunto
8.
Front Immunol ; 14: 1083072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180154

RESUMEN

Neutrophil responses are critical during inflammatory and infective events, and neutrophil dysregulation has been associated with poor patient outcomes. Immunometabolism is a rapidly growing field that has provided insights into cellular functions in health and disease. Neutrophils are highly glycolytic when activated, with inhibition of glycolysis associated with functional deficits. There is currently very limited data available assessing metabolism in neutrophils. Extracellular flux (XF) analysis assesses real time oxygen consumption and the rate of proton efflux in cells. This technology allows for the automated addition of inhibitors and stimulants to visualise the effect on metabolism. We describe optimised protocols for an XFe96 XF Analyser to (i) probe glycolysis in neutrophils under basal and stimulated conditions, (ii) probe phorbol 12-myristate 13-acetate induced oxidative burst, and (iii) highlight challenges of using XF technology to examine mitochondrial function in neutrophils. We provide an overview of how to analyze XF data and identify pitfalls of probing neutrophil metabolism with XF analysis. In summary we describe robust methods for assessing glycolysis and oxidative burst in human neutrophils and discuss the challenges around using this technique to assess mitochondrial respiration. XF technology is a powerful platform with a user-friendly interface and data analysis templates, however we suggest caution when assessing neutrophil mitochondrial respiration.


Asunto(s)
Neutrófilos , Estallido Respiratorio , Humanos , Neutrófilos/metabolismo , Consumo de Oxígeno , Mitocondrias/metabolismo
9.
Front Immunol ; 14: 1159831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180160

RESUMEN

Background: Acute Respiratory Distress Syndrome (ARDS) is a devastating pulmonary inflammatory disorder, commonly precipitated by sepsis. Glucocorticoids are immunomodulatory steroids that can suppress inflammation. Their anti-inflammatory properties within tissues are influenced by their pre-receptor metabolism and amplification from inactive precursors by 11ß-hydroxysteroid dehydrogenase type-1 (HSD-1). We hypothesised that in sepsis-related ARDS, alveolar macrophage (AM) HSD-1 activity and glucocorticoid activation are impaired, and associated with greater inflammatory injury and worse outcomes. Methods: We analysed broncho-alveolar lavage (BAL) and circulating glucocorticoid levels, AM HSD-1 reductase activity and Receptor for Advanced Glycation End-products (RAGE) levels in two cohorts of critically ill sepsis patients, with and without ARDS. AM HSD-1 reductase activity was also measured in lobectomy patients. We assessed inflammatory injury parameters in models of lung injury and sepsis in HSD-1 knockout (KO) and wild type (WT) mice. Results: No difference in serum and BAL cortisol: cortisone ratios are shown between sepsis patients with and without ARDS. Across all sepsis patients, there is no association between BAL cortisol: cortisone ratio and 30-day mortality. However, AM HSD-1 reductase activity is impaired in patients with sepsis-related ARDS, compared to sepsis patients without ARDS and lobectomy patients (0.075 v 0.882 v 0.967 pM/hr/106 AMs, p=0.004). Across all sepsis patients (with and without ARDS), impaired AM HSD-1 reductase activity is associated with defective efferocytosis (r=0.804, p=0.008) and increased 30-day mortality. AM HSD-1 reductase activity negatively correlates with BAL RAGE in sepsis patients with ARDS (r=-0.427, p=0.017). Following intra-tracheal lipopolysaccharide (IT-LPS) injury, HSD-1 KO mice demonstrate increased alveolar neutrophil infiltration, apoptotic neutrophil accumulation, alveolar protein permeability and BAL RAGE concentrations compared to WT mice. Caecal Ligation and Puncture (CLP) injury in HSD-1 KO mice results in greater peritoneal apoptotic neutrophil accumulation compared to WT mice. Conclusions: AM HSD-1 reductase activity does not shape total BAL and serum cortisol: cortisone ratios, however impaired HSD-1 autocrine signalling renders AMs insensitive to the anti-inflammatory effects of local glucocorticoids. This contributes to the decreased efferocytosis, increased BAL RAGE concentrations and mortality seen in sepsis-related ARDS. Upregulation of alveolar HSD-1 activity could restore AM function and improve clinical outcomes in these patients.


Asunto(s)
Cortisona , Neumonía , Síndrome de Dificultad Respiratoria , Sepsis , Animales , Ratones , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Glucocorticoides , Hidrocortisona , Macrófagos Alveolares/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Hidroxiesteroide Deshidrogenasas/metabolismo , Antiinflamatorios , Sepsis/complicaciones
10.
Biology (Basel) ; 12(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36829583

RESUMEN

BACKGROUND: Fibroblast Growth Factor (FGF23) is an endocrine hormone classically associated with the homeostasis of vitamin D, phosphate, and calcium. Elevated serum FGF23 is a known independent risk factor for mortality in chronic kidney disease (CKD) patients. We aimed to determine if there was a similar relationship between FGF23 levels and mortality in critically ill patients. METHODS: Plasma FGF23 levels were measured by ELISA in two separate cohorts of patients receiving vitamin D supplementation: critical illness patients (VITdAL-ICU trial, n = 475) and elective oesophagectomy patients (VINDALOO trial, n = 76). Mortality data were recorded at 30 and 180 days or at two years, respectively. FGF23 levels in a healthy control cohort were also measured (n = 27). RESULTS: Elevated FGF23 (quartile 4 vs. quartiles 1-3) was associated with increased short-term (30 and 180 day) mortality in critical illness patients (p < 0.001) and long-term (two-year) mortality in oesophagectomy patients (p = 0.0149). Patients who died had significantly higher FGF23 levels than those who survived: In the critical illness cohort, those who died had 1194.6 pg/mL (range 0-14,000), while those who survived had 120.4 pg/mL (range = 15-14,000) (p = 0.0462). In the oesophagectomy cohort, those who died had 1304 pg/mL (range = 154-77,800), while those who survived had 644 pg/mL (range = 179-54,894) (p < 0.001). This was found to be independent of vitamin D or CKD status (critical illness p = 0.3507; oesophagectomy p = 0.3800). FGF23 levels in healthy controls were similar to those seen in oesophagectomy patients (p = 0.4802). CONCLUSIONS: Elevated baseline serum FGF23 is correlated with increased mortality in both the post-oesophagectomy cohort and the cohort of patients with critical illness requiring intensive care admission. This was independent of vitamin D status, supplementation, or CKD status, which suggests the presence of vitamin D-independent mechanisms of FGF23 action during the acute and convalescent stages of critical illness, warranting further investigation.

12.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139476

RESUMEN

Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.


Asunto(s)
COVID-19 , Neutrófilos , Antígeno B7-H1 , COVID-19/inmunología , Ácidos Nucleicos Libres de Células , Desoxirribonucleasas , Humanos , Interleucina-6/farmacología , Neutrófilos/citología , Fenotipo , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2
13.
BMJ Open Respir Res ; 9(1)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36167472

RESUMEN

BACKGROUND: There is increasing evidence that vitamin D (VD) deficiency may increase individuals' risk of COVID-19 infection and susceptibility. We aimed to determine the relationship between VD deficiency and sufficiency and COVID-19 seropositivity within healthcare workers. METHODS: The study included an observational cohort of healthcare workers who isolated due to COVID-19 symptoms from 12 May to 22 May 2020, from the University Hospitals Birmingham National Health Service Foundation Trust. Data collected included SARS-CoV-2 seroconversion status, serum 25(OH)D3 levels, age, body mass index (BMI), sex, ethnicity, job role and comorbidities. Participants were grouped into four VD categories: (1) Severe VD deficiency (VD<30 nmol/L); (2) VD deficiency (30 nmol/L ≤VD<50 nmol/L); (3) VD insufficiency (50 nmol/L ≤VD<75 nmol/L); (4) VD sufficiency (VD≥75 nmol/L). RESULTS: When VD levels were compared against COVID-19 seropositivity rate, a U-shaped curve was identified. This trend repeated when participants were split into subgroups of age, sex, ethnicity, BMI and comorbidity status. Significant difference was identified in the COVID-19 seropositivity rate between VD groups in the total population and between groups of men and women; black, Asian and minority ethnic (BAME) group; BMI<30 (kg/m2); 0 and +1 comorbidities; the majority of which were differences when the severely VD deficient category were compared with the other groups. A larger proportion of those within the BAME group (vs white ethnicity) were severely VD deficient (p<0.00001). A larger proportion of the 0 comorbidity subgroup were VD deficient in comparison to the 1+ comorbidity subgroup (p=0.046). CONCLUSIONS: Our study has shown a U-shaped relationship for COVID-19 seropositivity in UK healthcare workers. Further investigation is required to determine whether high VD levels can have a detrimental effect on susceptibility to COVID-19 infection. Future randomised clinical trials of VD supplementation could potentially identify 'optimal' VD levels, allowing for targeted therapeutic treatment for those at risk.


Asunto(s)
COVID-19 , Deficiencia de Vitamina D , COVID-19/epidemiología , Femenino , Personal de Salud , Humanos , Masculino , SARS-CoV-2 , Medicina Estatal , Reino Unido/epidemiología , Vitamina D , Deficiencia de Vitamina D/epidemiología
15.
J Intern Med ; 292(4): 604-626, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35798564

RESUMEN

Vitamin D, when activated to 1,25-dihydroxyvitamin D, is a steroid hormone that induces responses in several hundred genes, including many involved in immune responses to infection. Without supplementation, people living in temperate zones commonly become deficient in the precursor form of vitamin D, 25-hydroxyvitamin D, during winter, as do people who receive less sunlight exposure or those with darker skin pigmentation. Studies performed pre-COVID-19 have shown significant but modest reduction in upper respiratory infections in people receiving regular daily vitamin D supplementation. Vitamin D deficiency, like the risk of severe COVID-19, is linked with darker skin colour and also with obesity. Greater risk from COVID-19 has been associated with reduced ultraviolet exposure. Various studies have examined serum 25-hydroxyvitamin D levels, either historical or current, in patients with COVID-19. The results of these studies have varied but the majority have shown an association between vitamin D deficiency and increased risk of COVID-19 illness or severity. Interventional studies of vitamin D supplementation have so far been inconclusive. Trial protocols commonly allow control groups to receive low-dose supplementation that may be adequate for many. The effects of vitamin D supplementation on disease severity in patients with existing COVID-19 are further complicated by the frequent use of large bolus dose vitamin D to achieve rapid effects, even though this approach has been shown to be ineffective in other settings. As the pandemic passes into its third year, a substantial role of vitamin D deficiency in determining the risk from COVID-19 remains possible but unproven.


Asunto(s)
COVID-19 , Deficiencia de Vitamina D , Suplementos Dietéticos , Hormonas , Humanos , Luz Solar , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Vitaminas/uso terapéutico
16.
Lancet Digit Health ; 4(4): e266-e278, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35279399

RESUMEN

BACKGROUND: Uncertainty in patients' COVID-19 status contributes to treatment delays, nosocomial transmission, and operational pressures in hospitals. However, the typical turnaround time for laboratory PCR remains 12-24 h and lateral flow devices (LFDs) have limited sensitivity. Previously, we have shown that artificial intelligence-driven triage (CURIAL-1.0) can provide rapid COVID-19 screening using clinical data routinely available within 1 h of arrival to hospital. Here, we aimed to improve the time from arrival to the emergency department to the availability of a result, do external and prospective validation, and deploy a novel laboratory-free screening tool in a UK emergency department. METHODS: We optimised our previous model, removing less informative predictors to improve generalisability and speed, developing the CURIAL-Lab model with vital signs and readily available blood tests (full blood count [FBC]; urea, creatinine, and electrolytes; liver function tests; and C-reactive protein) and the CURIAL-Rapide model with vital signs and FBC alone. Models were validated externally for emergency admissions to University Hospitals Birmingham, Bedfordshire Hospitals, and Portsmouth Hospitals University National Health Service (NHS) trusts, and prospectively at Oxford University Hospitals, by comparison with PCR testing. Next, we compared model performance directly against LFDs and evaluated a combined pathway that triaged patients who had either a positive CURIAL model result or a positive LFD to a COVID-19-suspected clinical area. Lastly, we deployed CURIAL-Rapide alongside an approved point-of-care FBC analyser to provide laboratory-free COVID-19 screening at the John Radcliffe Hospital (Oxford, UK). Our primary improvement outcome was time-to-result, and our performance measures were sensitivity, specificity, positive and negative predictive values, and area under receiver operating characteristic curve (AUROC). FINDINGS: 72 223 patients met eligibility criteria across the four validating hospital groups, in a total validation period spanning Dec 1, 2019, to March 31, 2021. CURIAL-Lab and CURIAL-Rapide performed consistently across trusts (AUROC range 0·858-0·881, 95% CI 0·838-0·912, for CURIAL-Lab and 0·836-0·854, 0·814-0·889, for CURIAL-Rapide), achieving highest sensitivity at Portsmouth Hospitals (84·1%, Wilson's 95% CI 82·5-85·7, for CURIAL-Lab and 83·5%, 81·8-85·1, for CURIAL-Rapide) at specificities of 71·3% (70·9-71·8) for CURIAL-Lab and 63·6% (63·1-64·1) for CURIAL-Rapide. When combined with LFDs, model predictions improved triage sensitivity from 56·9% (51·7-62·0) for LFDs alone to 85·6% with CURIAL-Lab (81·6-88·9; AUROC 0·925) and 88·2% with CURIAL-Rapide (84·4-91·1; AUROC 0·919), thereby reducing missed COVID-19 cases by 65% with CURIAL-Lab and 72% with CURIAL-Rapide. For the prospective deployment of CURIAL-Rapide, 520 patients were enrolled for point-of-care FBC analysis between Feb 18 and May 10, 2021, of whom 436 received confirmatory PCR testing and ten (2·3%) tested positive. Median time from arrival to a CURIAL-Rapide result was 45 min (IQR 32-64), 16 min (26·3%) sooner than with LFDs (61 min, 37-99; log-rank p<0·0001), and 6 h 52 min (90·2%) sooner than with PCR (7 h 37 min, 6 h 5 min to 15 h 39 min; p<0·0001). Classification performance was high, with sensitivity of 87·5% (95% CI 52·9-97·8), specificity of 85·4% (81·3-88·7), and negative predictive value of 99·7% (98·2-99·9). CURIAL-Rapide correctly excluded infection for 31 (58·5%) of 53 patients who were triaged by a physician to a COVID-19-suspected area but went on to test negative by PCR. INTERPRETATION: Our findings show the generalisability, performance, and real-world operational benefits of artificial intelligence-driven screening for COVID-19 over standard-of-care in emergency departments. CURIAL-Rapide provided rapid, laboratory-free screening when used with near-patient FBC analysis, and was able to reduce the number of patients who tested negative for COVID-19 but were triaged to COVID-19-suspected areas. FUNDING: The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.


Asunto(s)
COVID-19 , Triaje , Inteligencia Artificial , COVID-19/diagnóstico , Humanos , SARS-CoV-2 , Medicina Estatal
17.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L617-L624, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234046

RESUMEN

Recent studies have indicated that extracellular vesicles (EVs) may play a role in the pathogenesis of acute respiratory distress syndrome (ARDS). EVs have been identified as potential biomarkers of disease severity and prognosis in other pulmonary diseases. We sought to characterize the EV phenotype within bronchoalveolar lavage (BAL) fluid of patients with ARDS, and to determine whether BAL EV could be used as a potential biomarker in ARDS. BAL was collected from patients with sepsis with and without ARDS, and from esophagectomy patients postoperatively (of whom a subset later developed ARDS during hospital admission). BAL EVs were characterized with regard to size, number, and cell of origin. Patients with sepsis-related ARDS had significantly higher numbers of CD14+/CD81+ monocyte-derived BAL EV than patients with sepsis without ARDS (P = 0.015). However, the converse was observed in esophagectomy patients who later developed ARDS (P = 0.003). Esophagectomy patients who developed ARDS also had elevated CD31+/CD63+ and CD31+/CD81+ endothelial-derived BAL EV (P ≤ 0.02) compared with esophagectomy patients who did not develop ARDS. Further studies are required to determine whether CD31+ BAL EV may be a predictive biomarker for ARDS in esophagectomy patients. CD14+/CD81+ BAL EV numbers were significantly higher in those patients with sepsis-related ARDS who died during the 30 days following intensive care unit admission (P = 0.027). Thus, CD14+/CD81+ BAL EVs are a potential biomarker for disease severity and mortality in sepsis-related ARDS. These findings provide the impetus to further elucidate the contribution of these EVs to ARDS pathogenesis.


Asunto(s)
Vesículas Extracelulares , Síndrome de Dificultad Respiratoria , Sepsis , Biomarcadores , Líquido del Lavado Bronquioalveolar , Humanos , Sepsis/diagnóstico
18.
Eur Respir Rev ; 31(163)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35022257

RESUMEN

Commercially available since 2007, e-cigarettes are a popular electronic delivery device of ever-growing complexity. Given their increasing use by ex-smokers, smokers and never-smokers, it is important to evaluate evidence of their potential pulmonary effects and predict effects of long-term use, since there has been insufficient time to study a chronic user cohort. It is crucial to evaluate indicators of harm seen in cigarette use, and those potentially unique to e-cigarette exposure. Evaluation must also account for the vast variation in e-cigarette devices (now including at least five generations of devices) and exposure methods used in vivo and in vitroThus far, short-term use cohort studies, combined with in vivo and in vitro models, have been used to probe for the effects of e-cigarette exposure. The effects and mechanisms identified, including dysregulated inflammation and decreased pathogen resistance, show concerning overlaps with the established effects of cigarette smoke exposure. Additionally, research has identified a signature of dysregulated lipid processing, which is unique to e-cigarette exposure.This review will evaluate the evidence of pulmonary effects of, and driving mechanisms behind, e-cigarette exposure, which have been highlighted in emerging literature, and highlight the gaps in current knowledge. Such a summary allows understanding of the ongoing debate into e-cigarette regulation, as well as prediction and potential mitigation of future problems surrounding e-cigarette use.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Estudios Longitudinales , Fumadores , Vapeo/efectos adversos
19.
Clin Med (Lond) ; 22(1): 63-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078796

RESUMEN

BACKGROUND: Severity scores in pneumonia and sepsis are being applied to SARS-CoV-2 infection. We aimed to assess whether these severity scores are accurate predictors of early adverse outcomes in COVID-19. METHODS: We conducted a multicentre observational study of hospitalised SARS-CoV-2 infection. We assessed risk scores (CURB65, qSOFA, Lac-CURB65, MuLBSTA and NEWS2) in relation to admission to intensive care or death within 7 days of admission, defined as early severe adverse events (ESAE). The 4C Mortality Score was also assessed in a sub-cohort of patients. FINDINGS: In 2,387 participants, the overall mortality was 18%. In all scores examined, increasing score was associated with increased risk of ESAE. Area under the curve (AUC) to predict ESAE for CURB65, qSOFA, Lac-CURB65, MuLBSTA and NEWS2 were 0.61, 0.62, 0.59, 0.59 and 0.68, respectively. AUC to predict ESAE was 0.60 with ISARIC 4C Mortality Score. CONCLUSION: None of the scores examined accurately predicted ESAE in SARS-CoV-2 infection. Non-validated scores should not be used to inform clinical decision making in COVID-19.


Asunto(s)
COVID-19 , Neumonía , Mortalidad Hospitalaria , Humanos , Neumonía/diagnóstico , Neumonía/epidemiología , Pronóstico , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
20.
Thorax ; 77(1): 94-101, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33986144

RESUMEN

Cigarette smoking is the leading cause of preventable death worldwide. It causes chronic lung disease and predisposes individuals to acute lung injury and pulmonary infection. Alveolar macrophages are sentinel cells strategically positioned in the interface between the airway lumen and the alveolar spaces. These are the most abundant immune cells and are the first line of defence against inhaled particulates and pathogens. Recently, there has been a better understanding about the ontogeny, phenotype and function of alveolar macrophages and their role, not only in phagocytosis, but also in initiating and resolving immune response. Many of the functions of the alveolar macrophage have been shown to be dysregulated following exposure to cigarette smoke. While the mechanisms for these changes remain poorly understood, they are important in the understanding of cigarette smoking-induced lung disease. We review the mechanisms by which smoking influences alveolar macrophage: (1) recruitment, (2) phenotype, (3) immune function (bacterial killing, phagocytosis, proteinase/anti-proteinase release and reactive oxygen species production) and (4) homeostasis (surfactant/lipid processing, iron homeostasis and efferocytosis). Further understanding of the mechanisms of cigarette smoking on alveolar macrophages and other lung monocyte/macrophage populations may allow novel ways of restoring cellular function in those patients who have stopped smoking in order to reduce the risk of subsequent infection or further lung injury.


Asunto(s)
Macrófagos Alveolares , Neumonía , Humanos , Pulmón , Fagocitosis , Humo , Fumar/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA